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PREFACE

This technical report, revised in the summer of 1998, introduces the concept of adjoint
from its various applications in meteorology and describes the MM5 adjoint modeling
system. It is intended to provide scientific and technical documentation of the system for
users who will use such a system as one of their research tools. Comments and suggestions
for improvements or corrections are welcome and should be sent to the authors. Users who
want to know more about the overall MM5 adjoint modeling system should obtain a copy
of A User’s Guz'dé to the MM5 Adjoint Modeling System, by Zou, Huang and Xiao (1998).
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ABSTRACT

Adjoint models are increasingly applied to many problems in meteorology and
oceanography. The adjoint model of MMS5 is a tool which effectively computes the gradient
(or a Gateau-derivative) of any MM5 forecast aspect with respect to the model’s control
variables, which consist of model initial conditions, boundary conditions, and model pa-

rameters that define the physical and numerical conditions of the integration.

Different applications of adjoint models in meteorology are briefly reviewed and their
mathematical formulae are provided which illustrate how the adjoint model and/or tan-
gent linear model are used in each application. Then we describe the mathematical and
pumerical formulation used in developing the adjoint version of MM5. The possibility of
carrying out optimal control of lateral boundary condition in addition to the initial con-
dition, the restart of minimization procedure, the proper handling of disk space for large
problems, and the choice of different basic state update frequencies are provided. Finally,
problems that might arise in the practical coding of the adjoint of a numerical model are
summarized. A number of rules for the practical coding of tangent linear and adjoint mod-
els, along with various examples, are presented. The problems raised by the development

and maintenance of adjoint codes are also discussed.
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CHAPTER 1. INTRODUCTION

An ideal assimilation process must use all the available information i.e., the observa-
tions, the physical laws governing the flow, and the known statistical properties of the flow
to produce a complete and consistent description of the flow with its associated uncertainty.
Estimation theory provides a general conceptual framework and a number of algorithms
for solving this problem. However, estimation theory has been developed primarily for
engineering problems which are in general linear and of low dimension. Atmospheric data
assimilation problems are generally nonlinear and of large dimension. Computational ap-
proximations must, therefore, be developed to efficiently implement these algorithms for
atmospheric and oceanic problems. Indeed, a large amount of the work in data assimila-
tion has been devoted to the development of some cost effective simplifications to known
algorithms of estimation theory. An assimilation process involves various aspects of atmo-

spheric science, statistics, computer science, instrumental physics, and control theory.

Control theory has permitted probably the most significant progress accomplished
over last 10 years in data assimilation research. It offers a deterministic approach of the
estimation problem posed by data assimilation. In this approach, variational methods
are used to formulate the data assimilation problem as an optimization problem, which
can then be tackled using classical numerical methods, and is much easier to handle than
the stochastic calculus of the estimation theory. The introduction of the so-called adjomt
techniques, has dramatically reduced the computational expenses and has opened new
horizons for data assimilation and other research areas in meteorology and oceanography.
The adjoint techniques are the central topic of this report and will be extensively described.
Details of the development of the adjoint models, with specific emphasis on the MM5
adjoint model, will be provided. ‘

The documentation is divided into three parts. Part I provides a general description
of the adjoint technique and its various applications, Part II presents the MMS5 adjoint

model system, and Part IIT summarizes the practical adjoint coding experiences.






CHAPTER 2: A GENERAL DESCRIPTION OF ADJOINT TECHNIQUES
2.1 A simple statistical estimation problem

We introduce some of the basic probability concepts underlying the data assimilation

problem.

Let’s consider a simple estimation problem (Talagrand, 1992). Suppose a parameter
r has been measured at the same location and same time with two different methods.
We use y; and o (y2 and 02) to represent the measured value of z and its measurement
uncertainty of the first (second) measurement. For instance, we can assume that z is the
temperature of an object, y; is the value obtained with a certain measurement device of
accuracy o1 = 0.5° C, and y3 is the value measured with a different device of accuracy
o, = 1.0° C. From these two measurements, one wants to obtain an estimate of the actual

temperature with its associated error.

A naive idea would be to retain the first measurement which comes from a more
accurate device and neglect the second which is less accurate. This is not always true since
both measurements are realizations of a random process and, in some (unlikely) extreme
situations, measurement 2 (y2) can be closer to the true value than the measurement 1
(y1) is. It is better on average to use both observations to derive an estimate of x in order

to reduce the measurement uncertainty. This is the purpose of the estimation theory.

To present this solution mathematically, some basic probability concepts must be
introduced. Measurements y; and y2 can be seen as realizations of two independent random
variables! Y; and Ya (see Jazwinsky 1970, chapter 2 ). If we assume that measurements are
unbiaéed, i.e., when measurements are infinitely repeated they produce an average value

which equals to z, we can assign a particular form to these random variables:
Yi=z+E and i=2+E; (2.1)

where E is the so-called “observational” noise. Note in (2.1) z is considered as an unknown
but deterministic quantity. Notice that we didn’t consider natural variability of z in this

simple example, and assuming that we are concerned only with the measurement error of

1 In the following, upper case letters X, Y, E... will represent random variables from

which lower case letters z, y, €... will represent some realizations.

3 Preceding page blank



z (for a more general formulation, see Section 2.2). Observations Y are, however, random

variables through the observational random noise process E.

With this formalism, observations y; and yo are particular realizations of the two

random variables Y; and Ys:
nm=z+¢€ and y2=c+¢€ ' (2.2)

where €; and e are realizations of the random variables E; and E», respectively.

A common way to deal with random processes is to examine their statistical moments
after application of the statistical mean operator E{}. The statistical mean can be seen as
an average of all possible states, (Jazwinsky, 1970). Since we assume that the instruments

are unbiased, the statistical means of F; and F; are null, i.e.,
E{E;}=0 and E{E3}=0 (2.3)

The second moments, also called dispersion or variance, of the random variables E; and

E, are directly related to uncertainty. More precisely we have:
E{E}} =0? and E{E%}=0} (2.4)

Also, we suppose that the instruments are completely independent, so that there is no

correlation between the observational noises:

E{E\E;} =0 (2.5)

The estimator X* is also a random variable and is sought as a linear combination of
the two measurements: _ _
X* =a1Y1 +a2Ys (26)

where the weights a; and a, are to be determined. We first want the estimator to be
unbiased, thus E{X*} = «. Since a; and a; are deterministic and using relation (2.1) and

(2.6), we can calculate the statistical mean of this estimator:
E{X"} = z = B{a,Y + azY2}
= alE{Yl} + agE{Yé} (27)

= ai1T + Q2%

4



Hence: |
a;+a=1 (2.8)

Among all the unbiased linear estimators which satisfy (2.8), we select the estimator which
minimizes the dispersion of the estimation around the true value. This dispersion can be

seen as the estimation error and is given by the variance of the estimator:
= E{(X* - E{X"})(X" - E{X"})} (2.9)

Using equations (2.5), (2.6) and the fact that E{X*} = z we get from (2.9):

o’ = B{(X* - E{X"}(X* - B{X"})}
= E{(a1Y; + a2Y2 — z)*}
= E{(a1(Y1 — z) + az(Y2 — ) + (a1 + a2 — 1)z)%} (2.10)
= E{(a1(Y1 — 2) + a2(Y2 — 2))°}
= a?af + a%ag
Using equations (2.8), we can easily find the minimum of the function 02(ay,az2). The

corresponding coefficients are:

a; = o and a; = o (2.11)
T o2 o2 27 0% + o2 '
which gives the following estimator:
' o2 o2
X*=—2=Y + 5+ Y 2.12
o2 + o2 1+ o2+02 (2.12)

The estimate z*, which is deterministic, is a realization of the random variable X* with '
this set of coefficients:
e 2 -+ ————2 2.13
z .
2 I 02 n 2 | 0.2 Y2 ( )

where y; and y, are the actual measured values.

One can see that, if, for instance, the first observation is very poorly known or even
absent (o7 — 0o ), then the estimate is equal to the second measurement z* = y2. On the
contrary, if this observation tends to be perfect (01 — 0), then the estimate is equal to

this value z* = y.



Using equations (2.9) and (2.10), we can calculate the variance of the estimator. This

variance represents the estimation error and is given by:

2,2
o= 172 (2.14)
07 + 05
An examination of the estimation error in equation (2.14) shows that 6> < of and

o2 < o2. Thus, the uncertainty is decreased in the combination of the two measurements.

In addition, equation (2.14) can be rewritten as:
1
—=—+3 (2.15)

which has a simple interpretation: if one calls “precision” the inverse of the dispersion or
variance, then the precision of the estimate is the sum of the precisions of the observations.
Because it minimizes the estimation error, the estimator presented above is usually called
the best linear unbiased estimator (BLUE).

The same estimate z* can be found through a different approach: an acceptable
estimate of the exact value must be close to the observations, at least within the accuracy
of the latter. For any value z, the distance between z and the observations can be measured

by the following quadratic quantity:

| Ja)= ;?1)2 4@ ;.;2)2 (2.16)

Because the function J penalizes the deviation between the truth and the observations, it
is usually called cost function. In such a formulation, observations are taken into account
with weights corresponding to their precision, so that a better estimation can be expected. -
The estimate z* is the value which minimizes the cost function. At its minimum z* the

derivative of J is null, so that:

aJ, . (z* — 31 (z* — y2)
2 Y=0=92"2"F1 4 o1 74 17
o2 (z*)=0 p + p (2.17)
hence: y , _
* 03 b
— —1 2.1
o o? + o2 n o+ 02+ 02 y2 (2.18)

which is similar to (2.13).



This variational formulation of the estimation problem is conceptually very simple
and requires fewer calculations than the full probabilistic solution. However, there is no
counterpart of equation (2.14): the variational formalism does not give any indications
of the error associated with the solution. Here, the adjoint equation does not appear

explicitly because our example is monodimensional.

2.2 Data assimilation

2.2.1 Optimal statistical estimation

Section 2.1 illustrated some of the basic concepts of the linear estimation theory
through a simple example and showed how observational information can be best pro-
cessed so as to reduce uncertainty in estimates. Note that, in the previous simple example,
the variable z was assumed to be unknown but certain. A more realistic approach would be
to consider X as a random variable. This is particularly necessarily in atmospheric studies
in which X represents some physical phenomenon that could never be perfectly known
and there will always be some unpredictable fluctuations that can only be represented by
stochastic variables. In addition, in practice, atmospheric studies are generally conducted
on a geographical domain and not at a single location and several parameters at different
locations are necessary to propérly describe the state of the studied physical field over
this domain. Consequently, the quantity to estimate X is a random vector of dimension
N and components (X?,..., X N). For instance, X can be thought of as the values of the
temperature at the points of a two- or a three-dimensional grid mesh. Similarly, observa-
tions are not restrained to a single location, but they usually come from an observational
network. Thus, the observation Y is also a vector of dimension M, not necessarily equal
to N, of components (Y2, ..., YM). In addition, these observations are rarely recorded on
a regular grid, so that, generally, the grid on which the observations are availaible differs
from the grid on which the estimated field is sought. In order to get a relationship between
the estimated field and the observations equivalent to (2.1), we have to interpolate X to
the observation locations. H is the operator performing this interpolation; then in the

vectorial case the relationship corresponding to equation (2.1) case is:
Y = HX+FE (2.19)

Where X, Y and E are random vectors, i.e vectors made of random variables. The obser-

vation operator H is an MxN matrix. Note that, in the formalism (2.19) the observations

7



could be different from the field to be estimated. In such a case H would also repre-
sent some physical transformations, for instance the calculation of satellite radiance from

pressure, temperature and humidity profiles.

As before the observational noise is assumed to have zero mean, i.e., its mean is a null

vector:
E{E} = [E{EY},..,E{EM}]F = [0,...,0)T (2.20)

‘where the superscript ( )T denotes the transposition operation. To describe the sec-
ond order statistical properties of the observational noise, we now introduce the so-called

variance-covariance matrix:
O = E{(E-E{E})(E-E{E})T} = E{EET} (2.21)
which can be explicitly written as
E{E'E'} .. E{EE} .. E{E'EM}

0 E{E'EY} .. E{E‘E‘} .. E{E‘EM} (2.22)

E{EMEY} .. E{EME‘} .. E{EMEM)}/
where O is an M x M matrix whose diagonal elements are the variances of observations

while the off-diagonal elements are the spatial covariances between various observations.

It shall also include “representative” error. This matrix is assumed to be known.

Because the dimension of observation vector (M) is usually not the same as the di-
mension of the vector to estimate (IN), observations are often insufficient to completely
determine all the components, i.e., M < N. In this case (as we normally face for the
atmospheric and oceanic data assimilation problems), the estimation problem cannot be
solved in the absence of other sources of information. In numerical prediction, additional
information is usually available in the form of a forecast that results from the previous
analysis cycle. This means that an estimate z3, which does not take into account the
new observations, is also available. The estimation problem will consist of updating this
old estimate with the new observational information. Here we touch on the very impor-
tant concepts of a priori and a posteriori information. These concepts are of fundamental
importance. We will, therefore, assume that, in addition to Y and O, a realization zy

of the N dimensional random vector estimator Xp is also available with its statistics B.

8



(The letter B stands for background information). Mathematically, this adds the following

relationships (the estimator is assumed to be unbiased for simplicity):
E{Xp}=E{X} =% and B={(Xs-X)Xg-X)T} (2.23)

These statistics characterize the a priori probability distribution of the background infor-
mation. One can now easily anticipate that the key information in this estimation problem
will be the a posteriori probability, i.e the probability distribution of the random variable

X after incorporation of the observation information Y.

In summary, the quantities assumed known in this estimation problem are the ob-
servation operator H, a realization y with its uncertainty matrix O of the observations
random vector Y and a prior estimate z; (a realization of the random variable Xp) with

its uncertainty matrix B.
In order to estimate X, we now proceed‘ as in section 2.1, and find an estimator X*
which is a linear function of the available information,

X* = A Xp+ AY (2.24)

Now, A; is a N x N matrix and Az is N x M matrix. Both A; and A, are to be determined.
Again, we want the estimator to be unbiased, i.e E { X*} = z. This condition is verified
if:

7 = E{X*} = E{A1Xp+AY } = AT+ AHZ (2.25)

Hence, if:-
A = In—-AH (2.26)

where Iy is the unit matrix of order N. Equation (2.26) allows us to rewrite the estimator
(2.24) as the background variable plus a correction term:

X* = Xp + A2(Y—HXB) (2.27)

The correction term (Y —H X g) is also called the innovation vector. This vector represents
the difference between the new information brought in by the observations Y and what is

already known from the prior information Xp.
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In addition, among all the matrices satisfying (2.26), we want to choose the one which
minimizes the estimation error. This error is the vector X made of the elementary errors

associated with the estimation of each component of the vector X:

~

X =X'-X=[X X1, X}y =~ Xn ] (2.28)

To quantify this error, we can calculate the norm of the error vector after, eventually,

averaging on all the possible states:

i=N 1/2
o =|X|= (ZE{ X*X*‘}) . (2.29)

i=1

To calculate this norm, we can use the error covariance matrix P = E{ XX7T }.

associated with the estimator:
E{X'X'} .. B{X'X)} .. E{X1XN}
P = E{X‘X'} .. E{XX))} .. E{X‘XN} (2.30)
E{XNX1} .. E{XVXi)} .. E{XNXN}
As we can see, the norm of the estimation error vector is equal to the square root of the
sum of the diagonal terms or trace of P. The variance-covariance matrix contains almost
all the information necessary to solve the problem. If we remember that the trace operator
is a scalar product for the matrices, then ¢r(P) is the norm of P. We can see that the terms

of P describe the spatial structures of the error, while its norm provides a quantification

of this error.

Let us express the covariance matrix P in a function of the unknowns X and A,.

Using (2.19) and (2.26), we can develop the estimation error vector:

~

X=X-X
= A1 Xp+AY - X (2.31)
=A1(Xp—-X)+A(Y - HX) + (A1+A2H—IN)X

But according to equation (2.26) the third term in the right-hand-side of the last line is

null. Again using (2.26), we can write this error in a simpler way:
X = (Iy — AsH)(Xp — X) + Ay(Y — HX) (2.32)

10



With this expression of the estimation error, the covariance matrix P is:
P = E{ XXT}
= E{ ((In — A2H)(Xp — X) + A2(Y — HX)) ((IN — A2H)(Xp — X) + A2(Y - HX)" }

= (Iy-AHE{ (X -X)(Xs—-X)T }In — AH)T
+ (In - AH)E{ (Xp - X)(Y - HX)T A7 }
+ AE{ (Y — HX)(Xp - X)T }Y(Iv — A2H)"
+ AE{ (Y -HX)(Y -HX)TA] }

(2.33)
In addition we have:
E{(Xsg-X)Xp-X)"} =B
_ _ Ty Ty _
E{(Y -HX)(Y -HX)" } E{ EE" } (0] (2.3

E{(Xp-X)¥-HX)T} = E{ (Xp-X)ET} = 0
E{(Y-HX)Xs-X)T} = BE{EXp-X)T} =0

The last two lines simply state that the new measurements are not correlated with the

past estimation. Thus:

P = (In - A2H) B (In — A;H)T + A, O A ~ (235)

The norm of the estimation error associated with our estimator X* will be a minimum
if we can find the matrix A; and A, satisfying (2.26) and minimizing the trace of P. This
minimization can be easily done using the following theorems on trace:

trace( A+ B ) = trace( A) + trace( B)
(2.36)

o
E-A-trace ( ABAT ) = 2AB

for any symmetric matrix B (Gelb, 1980). Equation (2.36) can be easily demonstrated
using the properties of the scalar product. Since covariances matrices are symmetric, we

have:

0 _ 0 _ T 0 ' T
%tmce(P) =z Aztrace((IN AH)B(Iy - 4:H)" ) + 3 Aztrace(AgOAz)

= —2(Iy — AoH)BHT + 24,0
(2.37)

11



At the minimum, this derivative should be 0. Thus the matrix A, satisfies

0 = —2(Ix — A2H)BHT + 24,0 (2.38a)
or:

0 = —BHT + A HBHT + O] (2.38b)

Solving for A;, we obtain the optimal value:
Ay, = BHT[HBHT + 07! (2.39)
A, is called the Kalman Gain.

Substituting (2.39) into (2.27) gives an expression for the unbiased minimum variance
estimator: ‘
X* = Xgp + BHT[HBHT + 07! (Y - HXjp) (2.40)

This estimator is the so-called Kalman filter.

Similarly, the expression of the error covariance matrix associated with this estimator
can be obtained by multiplying (2.38a) by AZ, which gives:
0 = —2(In — AsH)BHTAT + 24,047
0 = (In— A;H)B(Iy — A2H)T + A,0AY — (Iy - AH)B (2.41)
0 =P - (In—AH)B
Where we have made use of (2.35). Therefore, the covariance matrix is:

P =(In- AH)B
(2.42)
=B -~ BHT[HBHT + O] 'HB
Since B and O are both symmetric positive definite, BHT[ HBHT + O ]"'HB is also
symmetric positive and therefore 3 P < B, i.e., the uncertainty has decreased during the

estimation.

Finally, the estimate is a realization of the estimator X*. This estimate is unbiased

and minimizes the estimation error. This error is given by the covariance matrix P:

* =zp+ BHY[HBHT + O|! (y— Hzy) | (2.43)

3P<B if pij<bij Vi, j
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P = B — BHT[HBHT + O|"'HB (2.44)

The statistical solution (2.43) has been the basis of most of the operational analysis
techniques and some are still in application. This analysis procedure is called Optimal
Interpolation (OI) and is most usually implemented in the following way (Talagrand 1992):
A numerical meteorological model is used to integrate the results of the previous analysis
to the time of the new analysis. This provides the background term xp; while all the
observations that are made available during the corresponding analysis time period are
collected to build the vector y. At the end of the model integration, the statistical estimate
z* is computed using the expression (2.43). This implies that the matrices O and B
are known. O is characteristic of the instrumental noise. This noise can be studied in
laboratory, so that O or, at least its diagonal, is usually known with good precision. The
B matrix is much harder to evaluate. There is a rigorous way to propagate in time the
information contained in B using the meteorological model, but the implementation of
such a solution requires computational resources that far exceed the present computer’s
capacity. B has to be approximated; it is usually modeled on the basis of a number of simple

hypotheses on the shape and spatial decay of the corresponding covariance functions.

Computer limitations are also the cause of another kind of approximation called data
selection (Talagrand, 1992). In the data selection algorlthm, the analysis grid is divided
into subsets and the computation of (2.43) is repeatedly applied to these different sub-
sets. However, for each subset, a limited number of observations, namely the observations
located in the vicinity of the subset, are used. Thus, the size of the matrices that must
be inverted is considerably reduced. This selection of observations is certainly legitimate
in the sense that observations at a large distance from a given point must have a small
influence on the value of the estimated field at that point. However experience shows that
it nevertheless introduces spatial noise in the resulting field. Equation (2.44) is usually not
fully implemented, and only the diagonal terms of the matrix P, i.e., the variances of the

analysis error, are computed.
2.9.2 Variational Approach — 3D-VAR

As in the example in Section 2.1, we ask if there is a deterministic formulation of the

multidimensional estimation problem. The answer is yes and this deterministic formulation

13



is also variational. As in the unidimensional case, the variational formulation is based on
the concept of precision instead of dispersion as with probability. Precision corresponds
to the inverse of the variance-covariance matrix. Therefore, the variational statistical
formulation of the multidimensional estimation problem can be expressed by the following

cost function:
Jvar = 1/2(zy —1)TB Y2y — ) + 1/2(y - Hz)TO (y - Hz) (2.45)

The vector ' which minimizes Jy 4 can be interpreted as the values that best fit simul-
taneously the background information zp and the observations y, given their respective

degree of confidence or precision B~ and O~

To find the minimum of Jy 4r, we can calculate its derivative:

aJ

= = - B Y@ ~z) ~ H'O(y— Hy) (2.46)

At the minimum this derivative is null, thus:
0 = - B Yzp—2') -~ HFO }(y - Hx') (2.47)
which can be solved for z':
0 = B Yzp—2') + HTO Yy — Hzy + H(zp — 2')) (2.48)
which gives:

g =z, + [B'+HTO'H | HTO Y(y — Hxy) ] (2.49)

However, a null derivative only indicates an extremum, which can be a minimum or

a maximum. Let’s check that, in addition to a null derivative, the second derivative or
Hessian matriz is positive:

0%J 0

— =— (=B Yzy—z) — HFO }(y- Hz

2% = bz \ (25— 2) v-Ha)) (2.50)

=B '+ HTO™'H

which characterizes a minimum. Since B and O are symmetric positive definite, the matrix

[B~' + HTO™'H] is also a positive definite and the extremum z’ given by (2.49) is a

minimum.
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Comparing (2.49) and (2.43), it is not readily apparent that the variational solution
and the minimal variance estimate are equivalent. This equivalence is shown in Appendix
A.

Note, that the variational solution does not provide an estimation of the error asso-
ciated with its solution. However, if we look at the expression of the Hessian matrix in -
(2.50) we can calculate its inverse using the Woodbury formula? for A = B™}, T = HT
and © = O~ H, this gives:

2 -1
( %z—f ) =[B!+ HTO'H]™!

=B - BH[I + O*HBHT |"'0"'HB

i (2.51)
=B - BH[O[I + OT'HBH" ]| HB

=B — BH[O + HBHT |"'HB

which is the expreséion (2.44) of the covariance matrix P associated with the estimation

solution.

 We have, thus, the following fundamental result:

02J \ ™ |
P = —-— 2.52
(%) (2.52)
That is, the error associated with the variational solution is given by the inverse of the
Hessian matrix. Using (2.44) and (2.51), we can now express the inverse P~ of the

covariance matrix:

-1 62J -1 TA-15
P = 5;5 = B + H'O™'H (253)

which allows an interpretation in term of precision as in the unidimensional case. The
precision or information that accompanies the minimal variance estimate is equal to the
sum of the precision on the background information and the precision on the observations

passed through the observation operator.

4

[A +TO]! = A7' — A7IT(I + AT JeA™
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Data selection mentioned in Section 2.2.1 tends to be used less and less with the
emergence of iterative techniques. Instead of attempting to invert directly the matrix
[O+HBHT), which represents the main computational burden in solving (2.43), a series of
approximate solutions are found by an iterative procedure that converges toward the exact
solution. Such implementations are referred as 3 Dimensional Variational Assimilation
(3D-VAR) system.

2.2.3 Physical space analysis system — 3D-PSAS

The success of the iterative techniques introduced by the variational formulation of
the 3D data assimilation problem has produced an interesting feedback effect on the OI
procedure. Iterative solutions, like Conjugate Gradient descent, have been used for a long
time in numerical analysis to solve matrix equations. They can, therefore, be used to invert
the matrix [O + HBHT] in (2.43). Such an approach provides a tractable implementation
of the complete OI solution. Paradoxically, in this kind of implementation the statistical
solution:
* = =, + BHT[O+ HBHT| }(y — Hzy) (2.54)

is formulated as the minimum of a new cost function: '
Jpsas =1/2 (w—wp)T[0 + HBHT|(w — wg) ~ (w—wp)T(y— Hzy) (2.55)

where w = (BHT)"'z and wp = (BHT) 'z,. As we can see, the new variable w is
the counterpart of x in the physical space of the observations. For that reason, this
implementation is called 3-Dimensional Physical Space Analysis System (3D-PSAS).

The cost function Jpss is primarily introduced for practical reasons. It simply makes
easier the implementation of the iterative algorithm used to invert the matrix [0+ H BH .
Although Jpsas seems quite different from the cost function Jy 4g, both functions are
equivalent; they express the same concept in two different spaces: the variational solution
is expressed in the phase space while the 3D PSAS uses the physical space for its operations.
One expression can be deduced from the other by the transformations performed in (A1-
A7) in Appendix A. The 3D-VAR and 3D-PSAS differ in required approximation to B. In
3D-VAR, B! is required and in 3D-PSAS B is required instead.

In summary, 3D-VAR and 3D-PSAS iterative algorithms are the two most efficient im-
plementations of the statistical solution for the data assimilation problem. In essence, both
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algorithms are equivalent and it was shown (Courtier 1997) that their overall computing

cost is similar. .
2.2.4 4-Dimensional variational data assimilation — 4D-VAR

Up to now, we have always assumed that the observations were available at the time
when the estimation is performed, and analyses are performed at exact intervals depending
on their update cycle (every 6, 12, 24 hours). With such approximation, it is not possible
to take into account the temporal variability of the observations within the analysis cycle.
- Depending on the type of observation, this can result in an important loss of information,
particularly for high frequency observations such as satellite and radar data. In reality,
observations are issued from different observational networks, each network having its own

measurement frequency.

In OI, 3D-VAR, and 3D-PSAS, a meteorological numerical model is used to propagate
the background information following an analysis cycle. This numerical model is another
source of information that is used in 4-dimensional data assimilation. This new informa-
tion is necessary to balance the increase of degrees of freedom in the estimation problem
that results from the extension to the temporal dimension. The numerical model which
usually discretizes the fluid dynamic equations can be considered as a prior information.
Its equations are a convenient medium to encapsulate all the statistical, dynamical and
physical knowledge we a priori have on the atmosphere. This model is supposed to reflect
the evolution of the vector to estimate X (the truth) with a certain degree of uncertainty

and has usually the form of a differential equation:

8X (¢)

5 = F(X@®) + W) (2.58)

where F stands for all the mathematical functions involved in the meteorological model,
and W (t) is a random variable figuring the model error. As usual, W(t) is assumed to
have a 0 mean and a covariance matrix Q(t). In addition we assume that W (¢) is a white
process, i.e E{W(t), WT(t)} =0if t' #¢.

The information available in the 4D data assimilation problem is, therefore,: i) a
background term z;, with its covariance matrix B, generally available at the beginning of

the assimilation time period; ii) the meteorological model of (2.58) and iii) the observations
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which are now distributed in time;
Y(it) = H( X)) + E(¢) (2.59)

Where H figures the conﬁgura.tion of the observational network at time ¢ and E(t) is
random variables accounting for the measurement error. As for the model, the error E(t)
is assumed to have a 0 mean and a covariance matrix O(t). E(t) is also assumed to be
white and uncorrelated with the model error W (t), i.e. E{ EWT } = 0.

From these data, two different approaches are possible:

- The filtering solution is sequential and aims to find the best estimate at the time
the observations are available. This is the approach used in OI and best illustrated
by the Kalman filter algorithm in which the optimal 3D data assimilation procedure

described in section 2.2.1 is applied each time an observation becomes available.

- The smoothing solution aims to globally estimate the state X (¢) on a complete time
period [to,tr] using all the observations available during this time period. In this
global adjustment, it makes use of the numerical model to take into account the

temporal distribution of the observations.

From a probability viewpoint, these solutions differ from the posterior information they
use: the filtering solution considers the information contained in the conditional proba-
bility function p(X(¢)/Y (), to £ 7 < t), while the smoothing solution is based on the
conditional probability function p(X(t)/Y(7), to < 7 < tr), i.e. by using all the informa-
tion available before, but also after, the estimation time. Thus, the smoothing can only
be performed at the end of the assimilation time window; but, except for the value X (tgr)
at the end of the assimilation time period, the smoothing solution processes much more
information than the filter does. Better estimates should, therefore, be expected from the

smoothing solution.

Indeed, the Kalman smoother equations which provide the optimal solution (in the sense
that it minimizes the variance) show that: i) the smoothing estimation error is lower than
the filtering estimation error and ii) both solutions are identical, same estimate and same
covariance matrix, at the end of the estimation period. In fact filtering can be viewed as a
pre-processing operation of the smoothing process. We now show the 4-D data assimilation

problem using a variational formulation. For notation purposes, we will use the continuous
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formulation which leads to more compact expressions. In reality, observations are available
at discrete times, but this does not affect the general form of the solution which can be

easily obtained from the continuous formulation using a Dirac distribution.

Now, the cost function must account for all the observations distributed within the
assimilation time window [t5, tr]. A natural extension of the 3D cost function (2.45) to
the temporal dimension could be (we note z;, = z(to), , T+ = z(t) and & = dz/dt):

J = 1/2(z, — z0)T B~ (zs, — 76) + 1/2 (e = H(ze)TO7 (g — H(zy)) dt (2.60)

to
Note that this cost function can also handle the 3D case with tg = toand O(t) = O * 6(t—
to). However, this function is not complete in the sense that it does not reflect all the in-
formation contained in the problem. Indeed, the meteorological model is the particular
information not used in this formulation. The model information is somewhat apart,
because it does not provide an observational fact, but information on the shape of the
phenomenon to estimate. Since, we know that the truth X satisfies (2.58) with a given
uncertainty W, it should be the same for the estimate; otherwise, this estimate will in-
evitably be biased. So, we are no more interested in the absolute minimum of the cost
function J, but in the model equations solution z* leading to the smallest value of J. In
this prospect, the model error W appears as an additional term which should be sought
to be minimized. Consequently, an additional term has to be added to the simple cost
- function (2.60):
tr
J=J +1/2 (&~ F(z:))TQi (& — F(z4))

to

, (2.61)
R
=J + 1/2/ wl Q; w, dt

to

and this function has to be minimized under constraint of the model equations (2.58).

" The minimization problem of 4D data assimilation slightly differs from its 3D coun-
terpart which was simply an unconstrained optimization problem. The 4D constraint
minimization can be reduced to an unconstrained optimization problem by considering
the minimization of the Augmented Lagrangian function of J, instead of J itself. The
Lagrangian function L is derived from J by the following expression:

L =J+ /tn /\?(IC— F(a:t) - wt) dt | (262)

to
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where \; is a N dimensional vector to be defined. Using the calculus of variation it can be
shown (Courant and Hilbert 1989) that J and L have the same extrema. These extrema
are solutions of the so-called Fuler Lagrange equations which express the stationarity for
L with respect to all its input variables: zi,,Zty, Zt, Tty Ttg, Ttg, We, We, A¢ and A which
should be considered as independent. The solution to the problem of minimizing J in
(2.61) or L in (2.62) can be found by introducing an adjoint model (see Section 2.3) and

a standard unconstrained minimization algorithm (Section 3.8).

2.3 Introduce an adjoint model

2.3.1 A continuous form of adjoint model

As mentioned in section 2.2.4, the cost function J in (2.61) and its Augmented La-
grangian function L in (2.62) have the same extrema. These extrema are solutions of
the so-called Euler Lagrange equations (Courant and Hilbert 1989). In order to get an

expression of the Euler-Lagrange equations, we write L explicitly:
L = 1/2 (:L‘to - :cb)TB‘l(:cto - .’L‘b)

tr . tr
+1/2 | (39— H(2:))TO7 (ye — H(ze)) + 1/2[ wEQTw (g6

to 1]

tr
+ M (& — F(zy) — wy) dt

to

An integration by parts of the last (hon quadratic) term in the right-hand side of (2.63)

gives:

tr ) tr tr
M(i—F(ze)—wp) dt = | Mladt — f AT(F(ze) +wy) dt

to to : to

t (2.64)
tr " \T tr T
= [/\ta:t ]to - , At .’Etdt - At (F(.’L‘t) + wt) dt
0 :

to
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and thus:

L = 1/2(zy — az:b)r""B‘l(xto — Tp)

+1/2 / " (ve - H(@))TO7 (ve - H(ze)) + 1/2 / " WO

to to
tr | tr : (265)
+  MpTin — ATty — Mzt — | N (F(ze) + we) dt
to to
tR'_ tr
=J 4 MpTin — ATty — M z,dt - AT(F(z1) + w;) dt
to to

With this expression of L, we can now perform the derivatives of L with respect to
all the input variables and find the expression of the Euler-Lagrange equations for the

continuous 4-D-VAR data assimilation problem:

My — B Hap, —z) = 0 | - (2.66)

Ap = 0 | (2.67)

—%’} - %g-T,{t - %’;—I.Togl(yt—H(x;)) =0 (2.68)
A — Q7w = 0 (2.69)

6;* _F(zl) - w = 0 (2.70)

This constitutes the so-called optimality system of equations that the estimate z* should
satisfy to be the optimal solution of the 4D-VAR data assimilation problem. Equation
(2.70) is precisely the model equation (2.58), this ensures that the model constraint will

be enforced for the optimal solution.

Using (2.69), we can eliminate w; in (2.70), this gives the following system of coupled

equations:
z; = Ty + Bl (2.71)
dz* . :
= F(z) + QW)X (2.72)
oy OFT OHT _, .
'_"a_t—- ’é‘; /\t + '5; Ot (yt-‘H(xt)) (2.73(1)
Ay = 0 (2.73b)
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In particular, we see that A is the solution of a partial differential equation (2.73) similar
to the model equation (2.72), except that the model physics F' has been linearized and
transposed. For this reason, (2.73) is called the adjoint model and ) is called the adjoint
state associated to state z. In the following we will refer to the meteorological model as
the direct model when confusions with its adjoint counterpart are possible.

Note an interesting relation which will be used in 4D-VAR algorithm: At the station-
ary point, 2 6z = 0, which is applied to the last expression of L in (2.65), leads to:

oJ

53;—0 - ’\‘to =0 (274)

In other words, the value of the adjoint state At, at the initial time is equal to the value
of the gradient of the cost function J with respect to the initial conditions (ICs) z4,.

Here, the adjoint model was introduced for solving a minimization problem. We note
the minus sign in front of the time derivative of the adjoint state in (2.73) which indi-
cates that this equation should be integrated backward in time from tgp to to, with the
appropriate “initial” conditions given by (2.73): A;, = 0. There is, thus, no information
initially 1ntroduced in the adjoint model, but information is only provided by the forcing
‘term ( Ot Yy,—H (z7))) which expresses the deviation of the model prediction (H(z¢))
from the corresponding observations (y). Note that, this term has a “precision” aspect
(matrix O~1). The adjoint model can, therefore, be interpreted as a computational opera-
tor which propagates backward the gain of information that results from the observations.
The total gain is contained in the vector )¢, which takes into account all the observations
available during the assimilation period [to, tg). In (2.71), this gain of information is used
to correct the outdated value z; of the background information. Similarly, the error term
QA is added in (2.71) to account for the information brought by the observations that
- was not already present in the physics of the model (operator F). The coupling in (2.72)

and (2.73) shows how observational and @ priori information is intricate.

The 4D-VAR data assimilation algorithm is obtained when the model is assumed to
be perfect. This means that E{W} = 0 and Q = E{WW7T} = 0, i.e. there is no dispersion

around the expected value 0. The model equation (2.58) becomes

8X(t)

5 = F(X() + w (2.75)
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The interest of such an assumption is that i) because Q = 0 the direct and adjoint equations
are not coupled, except at the initial time to, ii) at any time ¢ the state z; is uniquely defined
by the initial state z,. Therefore, if IV is the dimension of the vector z,, these N degrees
of freedom are enough to fully described the complete model trajectory 7, t > to and
the minimization problem has now the dimension N instead of N x K, where K is the

number of model time steps between [tg, tr), as in the Kalman smoother. In addition |
to this reduction of control variables, the direct and adjoint equations can be integrated
separately, but sequentially since the direct model trajectory defines the adjoint operator.

This is very suitable for iterative algorithms.

The optimality system corresponding to the 4D-VAR approximation is:

IL';O = Zp + BAto (276)
oz’ "o
% = F@) (2.77)
Adtp = 0 (2.78)
ax orT oHT __, '
“% - B9z At — oz Ry (y: — H(zy)) (2.79)

which can be solved iteratively using a classical descent algorithm.

2.3.2 A discretized form of adjoint model

Until now we used notations which are more consistént with that in the estimation
theory. Now we will use notations which are more accustomed to the _meteorological
community. We change the notation so that a realization of a vector and an operation
will use bold face lower and upper case letters respectively and the adjoint variable of a

variable x will be represented by % instead of A as used before.
The discretized form of the numerical model equation (2.75) can be written as
x(tr) = Qr(x)XOa (280)

and the cost function in (2.60) can be written as:

J(x0) =1/2(x0 — xp) T B~ (x — xp) +1/2 Z(Hr(x,-) ~y.)T O (H (%) — ¥r)

r=0

+ JP. C(281)
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where x¢ is the analysis vector on the analysis/forecast grid at time tg, X, is the model
forecast at time ¢, starting from IC xg, n is the total number of time levels on which
observations are available, x; is the forecast background vector, y, is a vector of observa-
tions at time ¢,, O, is the observation error covariance matrix of the rth observation time
(assuming uncorrelated observation errors in time) and is usually assumed diagonal (i.e.,
all observations are independent) since the inverse of O, O~1, is required in the definition
of J, B is the background error covariance matrix, H, is the transformation of model
variables to the observational quantities, and J? is a penalty term controlling gravity wave

oscillations.

Symbolically (2.81) can be written as a sum

n

J=J0+ I+ P =J"+ (JO), + J? (2.82)

r=0

where J? and J° are the background and the observation terms, respectively. J® measures
the misfit between the model initial state and all available information prior to the assim-
ilation period, summarized by the background field x;. J° measures the distance of the
model state from the observations at appropriate times during the assimilation window.
The term J° consists of several individual terms (J°), corresponding to various types of

observations at time ¢, within the assimilation period.

In order to obtain the optimal IC (x3) that minimizes J in (2.81), the gradient of J
with respect to the IC (xo):

VJ =VJ?+VJ° 4+ VJP (2.83)
needs to be calculated. The first term V.J® in (2.82) can be easily obtained as:
VJb = B~Y(x — x3) (2.84)

and the second term VJ° in (3.82) requires the adjoint model integration which shall be

briefly derived as follows:

Consider the change in the cost function J resulting from a small perturbation x’g in
1C (Xo):
J'° (Xo) = J° (X() + xlo) - J° (XO) (2.85)
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On one hand, J’® can be expressed as the directional derivative in the x'g direction plus

the higher-order terms and is given by
J' (x0) = (VJ° (%0))” X0 + O(lIx0l*). (2.86)

On the other hand, substituting (2.81) into (2.85) we obtain

J° (x0) = S HT (07 (H, (x,) = ¥7))" s + O(lxII*) (2.87)

r=0
where x', is the forecast difference at time ¢, between the perturbed and unperturbed
forward nonlinear model integrations resulting from the initial perturbation, x'o. Equating
(2.86) and (2.87), results in

(VJ° (x0))T %0 = in (07! (H,(xr) _ y,,))T x'r, (2.88)

r=0

. in which the higher-order terms are neglected.

The forward numerical model (2.80) can be differentiated (perturbed) to obtain a

so-called tangent linear model (TLM):
xl(tr) = Pr (X)x,(), : , (2.89)

which predicts in time the perturbation solution, accurate within the first-order approxi-

mation.

Using the symbolic expression of the linear version of the forecast model (2.89), (2.88)

becomes n
- T
(VJ° (x0)T ¥'o = 3 HT (07 (H,(x:) ~ yr)) PrX'o. (2.90)
r=0 '
In the limit of ||x'o]| = 0, (2.90) implies

R
VJ° (x0) = Y _PTHFO; ! (H, (%) — ¥r)- (2.91)

r=0
Therefore, the gradient of the cost function VJ° (xo) with respect to the IC xo can be

obtained as a summation of the following variables:

_ R
VJ° (x0) = Y %, (2.92)

r=0

25



where X is the solution of the following equations:
xp = P (x)%(t;)
i(tr) = HIO:I(HT(XT) - y'l‘)’ r= O, 11 AR} R’ (293)

i.e., each X{ is obtained by the backward adjoint model integration starting from the
“initial” condition HF O (H,(x,) — yr) at each time ¢.. Eq. (2.93) is the discretized
adjoint model of (2.80).

Since both (2.92) and (2.93) are linear, the summation in (2.92) representing VJ° (x)
may be obtained by a single adjoint model integration extending from time tg to to with

zero “initial” conditions for the adjoint variables at time t,, while the weighted differences
(forcing term) = HT O (H, (x;) — y») (2.94)

are added to the adjoint variables whenever an observational time ¢,.(r = R,R—1,-:-,0) is
reached. Thus a single integration of the adjoint model over the assimilation window can
yield the value of the gradient of the cost function with respect to the ICs. The approximate
computational cost for one single integration of the adjoint model is normally equivalent to
2 or more of the original nonlinear model integrations for the same length of the integration
time, which is of course, much cheaper than the finite-difference approximation to the

gradient value.

With the availability of the MM5 (Q), and its adjoint model (PT), and the adjoint of
the observation operator H (HT), the values of both J and VJ can be calculated. One can
then employ any unconstrained minimization software to ﬁnd the minimum (see section
3.8 for details). In 4D-VAR, all observations are used at once to perform the analysis
globally. The 4D-VAR can directly assimilate many measurements as long as they can be
expressed as a function of the basic model variables. For a specific type of observation,
users of MM5 adjoint model may need to develop their own adjoint of the observation
operator for assimilating that observation. Problems that may be encountered in adjoint

coding are described in Chapter 4.
2.4 Mathematical derivation of various adjoint applications
Having described the usefulness of the adjoint model in 4D-VAR, this section provides

a brief review of other different applications of adjoint models and presents the mathemat-

ical formulae briefly illustrating how the adjoint model and/or tangent linear model are
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used in each application. The idea is to provide the theoretical background and to show the
~ wide range of applications which could be offered by the availability of the MMS adjoint

model system.

2.4.1 Parameter estimation

The application of the variational approach to optimally determine model parameters
is conceptually similar to that of determining the optimal ICs in 4D-VAR. In the following

we will present a brief illustration of the method using the Lagrange multiplier method.

- Based on criteria J() which either measures distance between the model and obser-
vations or describes some balance conditions of some meteorological fields, or both, the
parameter estimate is to minimize J (@) by adjusting model parameters a, i.e., find the

optimal parameters o* such that

J(a*) < J(a), Va. (2.95)

In order to explicitly indicate the dependence of the model prediction on model pa-

rameters, we rewrite the model equation (2.58) into

% = F(x,0). (2.96)

Due to the dynamical coupling of the state variables to the forcing parameters, the

dynamics can be enforced through the use of a Lagrange function constructed by appending

the model equations to the cost function as constraints in order to avoid the repeated

application of the chain rule when differentiating the cost function. The Lagrange function
is defined by

L(x,a,%) = J+ <X, %—};- - F(x,a)) > (2.97)

where % is a vector of Lagrange multipliers. The Lagrange multipliers are not specified

but computed in determining the best fit.

The gradient of the Lagrange function must be zero at the minimum point. This

results in the following first order conditions:

oL |
5 =0- (2.98)
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oL

55 =0 (2.99)
8L
3z =0 (2.100)

The solution of (2.98)-(2.100) is called stationary point of L.

Substituting L into the above equations we obtain:

%% = F(x,a) (nonlinear model ) (2.101)
9%  (OFx)\T. aJ, .. . | <
~ %= ( I ) x +.5—£(ad‘]omt model ) (2.102q)
X|t=tp = 0. . (2.1020)
and 87 _ [** . OF(x,0)
. X, Q _
% + <X, T >dt=0. (2103)

to

An important relation between the gradient of the cost function with respect to pa-
rameters a, 0J/0a, and the partial derivative of the Lagrange function with respect to the

parameters is

oL
Va'](a) = BE!at stationary point, (2.104)
ie., '
tR
Vod(@) =204 [T <5 02 o 4 (2.105)

Oa  Jy, Oa

Comparing (2.102) with (2.67)-(2.68) we observe that both variational data assimila-
tion and parameter estimate employs the same adjoint equation model, which is used to
efficiently compute both the gradient of the cost function with respect to the model IC or

the gradient of the cost function with respect to model parameters.
2.4.2 Adjoint sensitivity analysis

In sensitivity analysis studies, the model output of interest is usually referred to as
the system’s response, instead of calling it as a cost function as in data assimilation and

parameter estimate. Sensitivity is a measure of the effect of changes in a given input
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parameter on a selected response. In this subsection, we will consider sensitivity of a

response to both model ICs and model parameters for completeness.

Consider, for example, a functional response R(x, a) of the form
tr
R(x,a) = / r(t; %, 0)dt (2.106)
to
where r(¢;x,a) depends on model variables x, the parameters o, and the time interval

[to, tr) represents the selected time window, where (tg — fo) is the time interval of most

interest.

The most general definition of the sensitivity of a response to variations in the system

parameters is the Gateau-(G-)differential:

tr tr
VR(xg,a;X'g,0') = / i - x'dt +/ rl - o'dt, (2.107)
to to
where _
or or '
r! E{(——,...,———)} , : 2.108a
x 61:1 a.’L‘p (Xo,a) ( )
: or or

r— .

T _{(aal,..., aaN)}(xo,a) ; (2.108b)

the subscript N is the dimension of the model parameters and P is the dimension of the

model variable x.

When R(x, a) is coﬁtinuous in x and a, the total variation of R is given by
R(xo + x',a + &) — R(x0, @) = VR(x0, &; x'0, &) + O[||x'ol*] + O[ll/|I’] ~ (2.109)

i.e., VR(xq,a; X'y, ') is linear in x' and o’. If R or its derivatives are discontinuous the

G-differential still has meaning.

The simplest and perhaps the most common procedure for sensitivity analysis of a
model consists of varying selected input parameters, rerunning the code, and recording
the corresponding changes in the response calculated by (2.106). The model parameters
responsible for the largest relative changes in the response are classified to be the most
important. For complex models, though, the large amount of computing time needed by

such recalculations severely restricts the scope of this procedure.
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Examining (2.107) we observe that in order to obtain the values of sensitivity of the
response, we should know the value of x’ in the time window [to, tr], which is the perturbed
nonlinear model solution, i.e., the following TLM solution.

, .
%’—;— - g—ix’ -—f—gga’ (2.110a)

xllt=to =X’o | (2110b)

The TLM in (2.110) is different from the TLM in (2.89) in which the model parameters
are fixed.

However, when the dimension of the initial state vector and the number of parameters
is large, the computational cost of calculating the first term in (2.107) is very high (we
have to run the TLM (2.110) P times to obtain all the components of x’, where P is the
dimension of the model state variables). Therefore, we eliminate x’(t) by using the adjoint

formulation.
Equation (2.110a) can be rewritten as

oF , -
e (2.111)

Lx' =
where L = 8/9t — 0F/0x.

The adjoint operator L* of the operator L is defined through the relationship

tr tr
/ X' - (L*R)dt = / % - (L')dt — [x' - R]i7, (2.112)

to to

where X is at this stage an arbitrary column vector of dimension P.

Using the adjoint model solution satisfying the following‘equations:

L*% =r], (2.113a)
x(tgr) =0, (2.113b)
we obtain
tr tr th
/ r - X'dt = L*% - x'dt = / % - (Lx')dt + x'g - %o. (2.114)
to to to

Substituting (2.111) into (2.114) we obtain

tr 1 ! s tr . OF ' ! &
Ty - X dt = X (z=a')dt +x'g - %o. (2.115)
to . O .

[
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With the use of (2.115), (2.107) can be written as

= R OF
VR = 7‘; ca'dt + / X- (%a,)dt + X’Qio, (2116) :

to to

which is the adjoint formulation for sensitivity analysis of a response functional (2.106).

Comparing (2.107) and (2:116) we see that the main advantage of the adjoint formu-
lation is that (2.116) is independent of x'(t). Thus, (2.116) replaces the time integration of
TLM with the calculation of a quadrature (8F/8a), an operation much cheaper to perform
when the number of the model parameters is large. The adjoint variable %(t) is the solution
of the adjoint equations (2.113), which are independent of x'(t) and o'. Therefore, a single
adjoint model calculation suffices to obtain the sensitivities of one functional response to all
the model parameters’ variations. Since the forcing term, rZ, in the adjoint model (2.113)
depends on‘ the functional defining the response, for each response the adjoint equations

model must be integrated anew.

It is obvious that for models that involve a large number of parameters and com-
paratively few responses, sensitivity analysis can be performed very efficiently by using

deterministic methods based on adjoint functions.

If one doesn’t consider model parameters as control variables, the first two terms in
(2.116) disappear and the sensitivity of a functional response (2.106) is simply the product
of the initial perturbation vector and the adjoint variable vector at ¢o resulting from a

backward integration of the adjoint model (2.113).

Comparing (2.68), (2.103) and (2.113), we find that in the sensitivity study, we use the
same adjoint model as was used in variational data assimilation and parameter estimate
experiments. It is the adjoint model, as a computational tool, that makes solving the large-
dimension variational data assimilation, parameter estimate and sensitivity study possible

and effective.

2.4.3 Singular vectors

Singular vectors (SV’s) denote perturbations obtained within linear theory by max-
imizing the growth of a chosen norm over a finite time interval (¢ — ¢o). Here, ¢ is the

initial time. Such perturbations are also called “optimal perturbations.”
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The calculation of SV’s requires a prior definition of an inner product in the linear
space of the perturbations. In other words, a norm has to be chosen, in accordance with
the specific dynamical problem at hand. Different norms can yield dramatically different
structures of SV’s. Norms commonly used in the literature are the “total energy norm”,

the “kinetic energy norm”, the “enstrophy norm” and the Euclidean “L; norm.”
Three major areas of application of SV’s can be found in the literature:
1. Study of the predictability of atmospheric flows:

Lorenz (1965) suggested that the growth of forecast errors could be conveniently ex-
pressed in terms of the growth of the SV’s of the forecast error norm. As a follow-up,
for the last few years, the ECMWF has been routinely using SV’s to construct the

center’s sets of initial perturbations for Ensemble Forecasting (Molteni et al., 1996).
2. Study of the instability properties of atmospheric and oceanic flows:

SV’s provide an alternative to the more “classic” concept of normal modes (Farrell,
1982 and Farrell, 1989).

3. Adaptive observations:

The use of SV’s has been proposed to identify (dynamically-sensitive) regions where
observations are much needed in order to more accurately determine the IC for model

forecasting (Palmer et al., 1998).

We present the mathematical formulas pertinent to the calculation of SV’s (Buizza et
al., 1993). Let us denote the inner product between two arbitrary vectors x', and x/3 by
< x'1, x's >, where the subscript E stands for the chosen norm. Then, in the “E-sense”

the norm of the state vector x’(t) is given by:
| ' (t) =< x'(2), X'(t) >E . (2.117)

This is the quantity which we intend to mazimize at time t! The time interval (¢ — to) is

also referred to as the optimization time.
Substituting the TLM expression (2.89) into (2.117), we can write:
| x'(t) |2 =< Px'o, PX'o >E, (2.118)
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or
| x'(t) | =< P**Px'q, X0 >5 , (2.119)

where P*E is the adjoint of P with respect to the E-norm. We note that all our previous
derivations of adjoint model were under the Euclidean Lz norm, which is the norm we

always use unless specified otherwise.

It is not difficult to show (Buizza et al., 1.993) that the perturbation which maxi-
mizes the norm (2.117) is the eigenvector of the self-adjoint operator (P*EP) of largest

eigenvalue, i.e., we must solve the eigenvalue problem:
(P*EP) v;(to) = o} vilto) - (2.120)

Also, the eigenvector associated with the second largest eigenvalue can be shown to pro-
duce the second largest amplification of norm, and so on. Due to the self-adjointness of
(P*EP), the SV’s {1;} form a complete and orthogonal set at the initial time ¢o, and their
eigenvalues {c?} are real. The latter are also positive, which follows from the fact that
the norm is introduced through a positive definite matrix. Less obvious is the fact that
the eigenvectors form an orthogonal basis at the final time as well (e.g., Noble and Daniel
1977). The eigenvectors {v;} are known in linear algebra as the (right-hand) singular

vectors (SV’s) of the matrix P, with correspondent singular values {o:}.

In practice, it is useful to relate the inner product defined in the (gener.al) E-norm
with that defined in the Euclidean L, norm. This is because we intend to use the adjoint
of the forward linear model in order to compute the SV’s. With few exceptions, adjoint

models are coded in the Euclidean Ly norm.

For two arbitrary vectors x; and X,, one can write:
< X3 , X3 >E=<X1,EX2 >L2v, (2.121)

where E is a matrix of weights derivable from the analytic expression for the quantity
used to introduce the norm. This point will be made more clear shortly when we treat
an example. It is easy to show (Buizza et al., 1993) that the adjoint matrix P*E in the

E-norm is related to the adjoint matrix P* in the Ly norm through the expression:
P*f = E7'P*E. (2.122)
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Equation (2.120) is equivalent to seeking the eigenvectors and eigenvalues of:

K = E"'P*EP . 2 (2.123)

Example: “Approximate Energy Norm”

We use the followinig quadratic expression as an approximation for the total pertur-
bation energy £ of the nonhydrostatic dry version of the MM5 (Bannon, 1995):

ul2+vl2+wl2 1 92 0!2 ) 1 p,g 6p R
£ = /,L/y {( - ) tatag EZ?E} ('a—a) dzdydo ,  (2.124)

where the first term on the right-hand side represents the kinetic energy, the second term

the available potential energy and the last term the elastic energy. The primes denote
perturbation quantities, 6 is the perturbation potential temperature and _ﬁz and ¢, are
reference values for the Brunt-Viiséld frequency and the spveed of sound in the basic state,
respectively. Also, 7 is a reference value for the density. For convenience, we replace the

temperature with the potential temperature in the state vector.

[} L ’ 1 [ T
If we represent the state vector as x = ({u b {v}, {w}, {8}, {pr }) , where
the curly brackets represent row sub-matrices made up of all the grid point values of the
corresponding model variable, then F is given by a diagonal matrix, whereby its elements

are easily derivable from (2.124), simply by imposing that:

E=<x,Ex >, . (2.125)

The Lanczos Algorithm

For large systems, as is the case for most of the primitive equation models, finding
the solution to (2.120) by means of standard eigenanalysis routines, such as those from
EISPACK, is prohibitive. It is then common to resort to the Lanczos algorithm (e.g.,
Golub and Loan 1989) to compute the leading SV’s and singular values. The algorithm
does not access directly the elements of the matrix, which is computationélly prohibitive in
terms of memory and computing time. It involves partial tridiagonalizations of the matrix,
whereby information about the extremal eigenvalues emerges long before the tridiagonal-

ization is complete. No intermediate full sub-matrices are generated in the process. In our
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applications, the Lanczos routines are coupled to the forward and adjoint linear models,
and a series of iterations is performed to yield the leading SV’s and singular values with

the desired accuracy.

The Lanczos routine at our disposal works only for symmetric matrices. It is therefore
necessary to transform K, as given by (2.123) into, a symmetric matrix, by means of a

coordinate transformation (Buizza et al., 1993). This is achieved by writing:
v = E-125 (2.125)
A new eigenvalue problem is obtained through this transformation:
Ko = o2, (2.126)
where | |
K = EV?KE-Y? = E~1?P*EPE™'/? (2.127)
is a symmetric matrix. |

In practice, the user is required to supply a subroutine which, given an arbitrary vector,
returns the product of K with that vector. We see from (2.127) that this subroutine must

perform the following sequence of operations:
1. multiply the state vector with matrix E~/2,

2. integrate the resulting vector on the forward linear model from to to t. This

accounts for the application of the forward propagator between ¢o and ¢,
3. multiply the resulting vector with matrix E,

4. integrate the resulting vector on the adjoint model backward from t to to. This
accounts for the application of the adjoint of the forward propagator in the Euclidean L

norm, and

5. multiply the resulting vector with matrix E-1/2,

2.4.4 Normal modes and adjoint modes

The TLM (2.89) can be used to calculate the normal modes that grow on a given

basic state, as described below:
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2.4.4a. Frozen Basic States

For a resting basic state, i.e., for x(t) = xo V¢, model solutions to the TLM

ox'(t)
ot

=L)X (),  L(x() = %I;(X(t)) (2.128)

that possess an exponential time dependence of the amplitude can be obtained through
the ansatz x'(t) = e’'z, since the linear operator L becomes independent of time. This
leads to the eigenvalue problem: |

Lz = 0z, (2.129)

where z = z, + iz; is the eigenvector and ¢ = o, + i0; is the eigenvalue. The real part
of o, o, is the growth rate and the imaginary part, o;, is the frequency. The nt? normal

mode is defined as:
Z, = Re{z,e°"'} = €7t {2, cos(Onit) — Zni sin(oqit)} . (2.130)

Equation (2.129) can be solved by two distinct approaches:

1. Relatively small systems: Solving (2.129) is a straightforward task when the system
is of a “reasonably small” dimension, i.e., when the matrix L can be stored in the
computer memory and standard eigenproblem solvers (e.g. routines from NAG) can
be used. We note that L can be found vefy easily with the help of the (time-stepping)
TLM. By setting the I® element of the vector of the IC x’g to 1, zeroing all the other
elements, and making a one-time-step integration, we obtain the tendency dx/dt, |
which is the I** column of L. Repeating this process N times, where N is the dimension
of the system, we obtain the matrix L. The procedure thus consists of generating a

column of L at a time.

For frozen basic states, the normal modes {Z,} represent shape-preserving solutions.
When integrated on the TLM, the shapes of these perturbations repeat themselves

after every period 27 /op;.

2. Large systems: The use of the method outlined above becomes prohibitive when we
are interested in systems of large dimensions, as is the case in most applications of
the MM5. In such cases, however, we can still compute the leading normal modes

and corresponding eigenvalues by resorting to an algorithm which does not access
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directly the elements of the matrix. The Lanczos method, which is very successful
in computing singular vectors (see section on singular vectors), does not appear to
be very useful in dealing with asymmetric matrices. We recall that, in general, L
is an asymmetric matrix. Anderson (1991) used with success the method proposed
by Goldhirsch et al. (1987) in his calculations of the normal modes of a barotropic
model. The method can be applied to large asymmetric matrices and consists of
reducing the large N x N original problem to a smaller K x K problem (K << N).
This is accomplished iteratively with the help of the TLM, a standard eigenproblem
solver and an orthogonalization routine. The method consists of generating K << N
linearly independent vectors, which, when integrated a number of times on the TLM,
and orthogonalized, will converge to a certain sub-matrix of dimension K x K. The
eigenvectors of that submatrix are the K most unstable eigenvectors of L. For detailed
derivation of this method, please see Goldhirsch et al. (1987).

2.4.4b. Time Varying Basic States

The solution to (2.128), subject to the IC x'(tp) = x’d, can be written as (2.89),

where P(t) is called the forward propagator between times %, and £.

Following Frederiksen (1997), the finite-time normal mode eigenvectors of a time de-
pendent basic state, between times ¢, and t, + 7, can be defined as the eigenvectors of
the forward propagator for this time interval. The finite-time normal modes are defined
in a manner analogous to (2.130). If the nth eigenvalue of the forward propagator is
Anr + @ Ani, then the growth rate and phase frequency of the ntP finite-time normal mode

are conveniently defined as gnr = £In(A2,. + A2,) and opn; = Larctanai, respectively.
y 27 nr ni T Anr?

The leading finite-time normal modes and corresponding growth rates and phase fre- .

quencies can be computed using the method described in 2.4.4a.

2.4.4c. Adjoint Modes

The adjoint eigenvectors are the eigenvectors of the adjoint of the matrix of the linear
problem (for time invariant basic states) or of the adjoint of the forward propagator (for
time evolving basic states). In the latter case, the terminology finite-time adjoint eigen-
vectors is more appropriate. The adjoint modes (and finite-time adjoint modes) are de-

fined in a manner analogous to (2.130).
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The computation of adjoint eigenvectors involves the definition of a norm. This is

done by introducing a matrix of weights, E (see section 2.4.3),

For time invariant basic states and when the system is not too large, one can find L
as described in point 1 of 2.4.4a., and then calculate its adjoint in the chosen E-norm. The
adjoint eigenvectors and respective eigenvalues (which are complex conjugates to those of

L) can be found by using a standard eigenanalysis routine.

For large systems, or for time evolving basic states (irrespective of the dimension of
the problem), one can resort to the method described in point 2 of 2.4.4a, i.e., the adjoint
of the TLM can be coupled to the Goldhirsch et al. routine.

We note that the adjoint of the MM5 TLM, which is coded in the Euclidean Ly norm,
can be used to obtain the adjoint modes corresponding to any arbitrary norm by assigning
a proper weighting coefficient to the inner product which defines the norm (see section
2.4.3 on Singular Vectors for the relation between the adjoint of an operator with respect

to any E-norm and the adjoint with respect to the Euclidean Ly-norm).

Within the context of atmospheric dynamics, adjoint modes are useful in their connec-
tion to the normal modes. For perturbations normalized to have the same initial amplitude,
adjoint modes represent the best initial perturbations to excite the normal modes in the
limit of time approaching infinity (Farrel, 1982 and 1989). The concept of “time approach-
ing infinity” is problem dependent (De Pondeca et al., 1998). In blocking, for instance, it
can mean 2 to 3 days or even less. If one believes that a certain. aspect of the atmospheric
(or oceanic) dynamics simply represe